Exercise 1.46

(a) Find the scalar product of the two vectors $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ given in Exercise 1.42. (b) Find the angle between these two vectors.

Solution

The two vectors from Exercise 1.42 are

$$
\begin{aligned}
& \mathbf{A}=4.00 \hat{\boldsymbol{i}}+7.00 \hat{\boldsymbol{j}} \\
& \mathbf{B}=5.00 \hat{\boldsymbol{i}}-2.00 \hat{\boldsymbol{j}}
\end{aligned}
$$

They're illustrated in the $x y$-plane below.

The scalar (dot) product of \mathbf{A} and \mathbf{B} is obtained by multiplying the respective components and adding them together.

$$
\mathbf{A} \cdot \mathbf{B}=(4.00)(5.00)+(7.00)(-2.00)=6.00
$$

The dot product can be written in terms of the angle θ between the two vectors.

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta
$$

Solve for this angle.

$$
\begin{gathered}
\cos \theta=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|} \\
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}\right)
\end{gathered}
$$

Now that the formula for θ is known, plug in the numbers.

$$
\theta=\cos ^{-1}\left(\frac{6.00}{\sqrt{4.00^{2}+7.00^{2}} \sqrt{5.00^{2}+(-2.00)^{2}}}\right) \approx 82.1^{\circ}
$$

